Limit of sequence defined by linear 4-th degree Arithmetic Mean Recurrence.
Problem with a solution proposed by Arkady Alt , San Jose , California, USA

Let (u,).=0 be sequence defined recursively u,,; = ot Un-l +4”"‘2 FUn3 gy >3,

Determine limu,,.
n—>w

As a variant.

Let (u.)n>0 be sequence defined recursively
Upsl = Un + Un-1 +4un—2 + Un-3 n>3
4u3 + 3142 + 2u1 + Uy

10

Prove that }lgrg.;un =

Solution.

We will find a,b,c and d such that u,.1 + au, + bu,— + cu,— = d,n > 2.

We have u,1 + auy, + buy—y + cun- — (Uy + auty—y + bty + cty3) = 0 <

Upe1 + (@ — Duy + (b — @)un-y + (¢ — b)uy— — cu,—3 = 0.Comparing this recurrence with
original we obtainthata—1=b-a=c-b=—-c = —% = c= %,b = %,a = % and,
4u3 + 3u2 + 2u1 + Ug

therefore, d = us + aur + buy + cug =

i ; l _ dus + 3ur + 2uq + uo >
4un+ 4un_1+ 4un_2 1 n > 2.

Let ¢, := u, — 6 where § can be determined by claim:
tot + Stat 2t + L= 0 8+38+25+15-do 25-deos-2 o

Thus, w1 +

4 4 4 4°74°7 2 5
5_4u3+3u2+2u1+u0.
10
Thus, u, = 243+ 3”216 2ui+Uo 4y e NU {0}, where 1, satisfy
(1) tn+1+%tn+%tn,1+}‘tn2—0n>2
Let P(x) = x3 + sz + 5 41‘ Note that P(x) is strictly increasing in R. Indeed,
ey 220 3 .1 _ 1 S
P'(x) = 3x Xt 3<x+ ) + >Oforal|realx

Since P(-1) < 0 and P<_Z> > 0 then P(x) has a unique real root x; € (—1,—%)
1 1

and, therefore, P(x) = (x — x1)(x®> + px + q) < x> + 2)62 + Xt =
23+ (p—x1)x* + (g — px1)x — gx; yield p =x1+% e (-1 —) and g = —4— e (0,1).

Note that discriminant of quadratic trinomial x> + px + ¢ is negative, that is p? < 4q
(in particular it's yield x? + px; + ¢ > 0).
Indeed,

p2—4q=<x1+—> —4. ( 4X1):(x1+_> +—1<(x1+%>2—1<%—1.

Coming back to recurrence (1) we can rewrite it by two different way, namely, we have

Iny2 + = lne1 + %tn + %tn—l =thr + (P —X1)thr + (g — px1)ty — gXitp =

3
4
Inio + Pty +qty — xl(tn+1 + pt, + qtn—l) = Inr2 — X1lns1 +p(tn+1 - xltn) + CI(tn - xltn—l)-

Since tyi2 + ptast + gty = x1(tus1 + pta + qta—r) then 1y + tx, + qtur = X7tz + pt1 + qto)

and, therefore, a, = tu1 + ptu + qtu1 is infinitely small, that is lima, = 0 (because



|X1| < 1)
Since tho — X1ty + p(tars — x1t0) + gty —x1t,1) = 0and 0 < g < 1, 4g > p? then
accordingly to Lemma* sequence f, := t,.1 — x1t, infinitely small as well.

Indeed, let y, = L,, then B2 + pPui1 +qfn =0 = Y2 — 2+ Lynﬂ +7n, = 0.
() e
Since ﬁ < 1then y, is bounded and, therefore, lim B, = lim (/7 )"y, = 0

Thus, we have t,,1 + pt, + gtn-1 = Ay, the1 — X1ty = P

Hence, (p + x1 )ty + gty-1 = @, — Bpand t, — xi1t,-1 = P, Qive US
x1(an = PBn) +qPn1 = x1((p+x1)th + qtn1) + g(tn — X1t4m1) <=
xi1(an = Bn) + qBn

5 and, therefore,
xl +px1 + q

()C% + pXy +Q)tn = xl(an _ﬁn) +C]ﬁn—1 =ty =

lim¢, = +lim(m(txn = PBn) +qPn1) = 0.

n—c 2

X7 +px;+q """

Hence, }li_)fgl/ln _ LLIL}(tn +8) =6 = dusz + 3u21-(; 2uq + ug )
*Lemma.
Any sequence (x,),., such that x,,; —2rx, +x,.1 = 0,n e Nand 0 < Irl < 1, is bounded.
Proof.
First we will find (x,),, in supposition x| < 1,n e NU {0}. Let¢ :=cos™'(r) and
x, can be represented as x, = cos¢,,for some ¢,. Then we obtain
(1) cos@uir —2cos@ +cos@, +cos@,1 =0 < cos@,1 —cos(@, +¢) =
cos(@n — @) — COS Q1.
Claim @1 = ¢+ @,n e NU{0} < ¢, = ng + ¢o, n € NU {0} give us the sequence
(cos(ng + o)), Which satisfy (1) and, therefore, sequence (x,),., = (Acos(ng + 9o)),-0
satisfy (1) as well for any given ¢o,A.For any sequence (x,),., we can determine
A and ®o

by claim Acoso = x9, Acos(¢ + @o) = x1.1f xo = 0then ¢y = % andA = ——X .
cos((p+ %)
if xo # 0 then
cos(p +@o) _ xi. i _ X1 4 X1
—Cosgo X0 << COSQ —SInQ - tan@po = Yo <& Po = tan COt(p_—xosin(p
and then A = =0

COS Qo *
Thus, we have two sequences (x,),., and (x,) both satisfy x,.; — 2rx, + x,-1 = O,n € N
and xo = Xo,x; = X; and, therefore, by math Induction we obtain x, = x,,n € NU {0}.
So, x,l <A,neNU{0}.H



